343 research outputs found

    Conceptual Organization is Revealed by Consumer Activity Patterns

    Get PDF
    Computational models using text corpora have proved useful in understanding the nature of language and human concepts. One appeal of this work is that text, such as from newspaper articles, should reflect human behaviour and conceptual organization outside the laboratory. However, texts do not directly reflect human activity, but instead serve a communicative function and are highly curated or edited to suit an audience. Here, we apply methods devised for text to a data source that directly reflects thousands of individuals’ activity patterns. Using product co-occurrence data from nearly 1.3-m supermarket shopping baskets, we trained a topic model to learn 25 high-level concepts (or topics). These topics were found to be comprehensible and coherent by both retail experts and consumers. The topics indicated that human concepts are primarily organized around goals and interactions (e.g. tomatoes go well with vegetables in a salad), rather than their intrinsic features (e.g. defining a tomato by the fact that it has seeds and is fleshy). These results are consistent with the notion that human conceptual knowledge is tailored to support action. Individual differences in the topics sampled predicted basic demographic characteristics. Our findings suggest that human activity patterns can reveal conceptual organization and may give rise to it

    A Photometric Metallicity Estimate of the Virgo Stellar Overdensity

    Get PDF
    We determine photometric metal abundance estimates for individual main-sequence stars in the Virgo Overdensity (VOD), which covers almost 1000 deg^2 on the sky, based on a calibration of the metallicity sensitivity of stellar isochrones in the gri filter passbands using field stars with well-determined spectroscopic metal abundances. Despite the low precision of the method for individual stars, we derive [Fe/H] = -2.0 +/-0.1 (internal) +/-0.5 (systematic) for the metal abundance of the VOD from photometric measurements of 0.7 million stars in the Northern Galactic hemisphere with heliocentric distances from ~10 kpc to ~20 kpc. The metallicity of the VOD is indistinguishable, within Delta [Fe/H] < 0.2, from that of field halo stars covering the same distance range. This initial application suggests that the SDSS gri passbands can be used to probe the properties of main-sequence stars beyond ~10 kpc, complementing studies of nearby stars from more metallicity-sensitive color indices that involve the u passband.Comment: 5 pages, 3 figures, Accepted for publication in ApJ Letter

    Cut-free Calculi and Relational Semantics for Temporal STIT Logics

    Get PDF
    We present cut-free labelled sequent calculi for a central formalism in logics of agency: STIT logics with temporal operators. These include sequent systems for Ldm , Tstit and Xstit. All calculi presented possess essential structural properties such as contraction- and cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown sound and complete relative to irreflexive temporal frames. Additionally, we extend current results by showing that also Xstit can be characterized through relational frames, omitting the use of BT+AC frames

    Probabilistic Consensus of the Blockchain Protocol

    Get PDF
    We introduce a temporal epistemic logic with probabilities as an extension of temporal epistemic logic. This extension enables us to reason about properties that characterize the uncertain nature of knowledge, like “agent a will with high probability know after time s same fact”. To define semantics for the logic we enrich temporal epistemic Kripke models with probability functions defined on sets of possible worlds. We use this framework to model and reason about probabilistic properties of the blockchain protocol, which is in essence probabilistic since ledgers are immutable with high probabilities. We prove the probabilistic convergence for reaching the consensus of the protocol

    A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy: VI. s-Process and Titanium Abundance Variations Along the Sagittarius Stream

    Full text link
    We present high-resolution spectroscopic measurements of the abundances of titanium (Ti), yttrium (Y) and lanthanum (La) for M giant candidates of the Sagittarius (Sgr) dwarf spheroidal (dSph) + tidal tail system pre-selected on the basis of position and radial velocity. The majority of these stars show peculiar abundance patterns compared to those of nominal Milky Way (MW) stars. The overall [Ti/Fe], [Y/Fe], [La/Fe] and [La/Y] patterns with [Fe/H] of the Sgr stream plus Sgr core do resemble those seen in the Large Magellanic Cloud (LMC) and other dSphs, only shifted [Fe/H] by ~+0.4 from the LMC and by ~+1 dex from the other dSphs; these relative shifts reflect the faster and/or more efficient chemical evolution of Sgr compared to the other satellites, and show that Sgr has had an enrichment history more like the LMC than the other dSphs. By tracking the evolution of the abundance patterns along the Sgr stream we can follow the time variation of the chemical make-up of dSph stars donated to the MW halo by Sgr. This evolution demonstrates that while the bulk of the stars currently in the Sgr dSph are quite unlike those of the MW halo, an increasing number of stars farther along the Sgr stream have abundances like MW halo stars, a trend that shows clearly how the MW halo could have been contributed by present day satellite galaxies even if the present chemistry of those satellites is now different from typical halo field stars. Finally, we analyze the chemical abundances of a moving group of M giants among the Sgr leading arm stars at the North Galactic Cap, but having radial velocities unlike the infalling Sgr leading arm debris there. Through use of "chemical fingerprinting", we conclude that these northern hemisphere M giants also are Sgr stars, likely trailing arm debris overlapping the leading arm in the north.Comment: Accepted for publication in Ap

    Update on the Nature of Virgo Overdensity

    Full text link
    We use the Eighth Data Release of Sloan Digital Sky Survey (SDSS DR8) catalog with its additional sky coverage of the southern Galactic hemisphere, to measure the extent and study the nature of the Virgo Overdensity (VOD; Juric et al. 2008). The data show that the VOD extends over no less than 2000 deg^2, with its true extent likely closer to 3000 deg^2. We test whether the VOD can be attributed to a tilt in the stellar halo ellipsoid with respect to the plane of the Galactic disk and find that the observed symmetry of the north-south Galactic hemisphere star counts excludes this possibility. We argue that the Virgo Overdensity, in spite of its wide area and cloud-like appearance, is still best explained by a minor merger. Its appearance and position is qualitatively similar to a near perigalacticon merger event and, assuming that the VOD and the Virgo Stellar Stream share the same progenitor, consistent with the VSS orbit determined by Casetti-Dinescu et al. (2009).Comment: 9 pages,6 figures; accepted for publication in A

    Alignment of a digital watershed and land use game to national education standards

    Get PDF
    Digital games, especially simulations, have supported student learning outcomes in the areas of science and agriculture in classrooms and nonformal settings. Simulations contribute robustly to student achievement in science, technology, engineering, and mathematics (STEM), and agriculture content areas, especially when they are aligned with national education standards. The People in Ecosystems Watershed Integration (PEWI) simulation is a digital game that was evaluated for fit to two national standards: the Next Generation Science Standards (NGSS) and the Agriculture, Food, and Natural Resources Standards (AFNR). The evaluation of alignment of PEWI to NGSS provided “extensive” evidence on a four‐point scale for meeting Criterion A: Explaining phenomenon/designing solutions; Criterion B: 3‐D learning, science and engineering practices, rated for three areas: (a) “extensive” for science and engineering practices, (b) “adequate” for disciplinary core ideas, and (c) “extensive” for cross‐cutting concepts. Additionally, PEWI aligned with nine high school–level NGSS student performance expectations categories. For AFNR Standards, the PEWI evaluation provided evidence for alignment to 10 standards and 17 indicators from the AFNR areas of Environmental Service Systems, Natural Resource Systems, and Plant Systems

    Light Curve Templates and Galactic Distribution of RR Lyrae Stars from Sloan Digital Sky Survey Stripe 82

    Full text link
    We present an improved analysis of halo substructure traced by RR Lyrae stars in the SDSS stripe 82 region. With the addition of SDSS-II data, a revised selection method based on new ugriz light curve templates results in a sample of 483 RR Lyrae stars that is essentially free of contamination. The main result from our first study persists: the spatial distribution of halo stars at galactocentric distances 5--100 kpc is highly inhomogeneous. At least 20% of halo stars within 30 kpc from the Galactic center can be statistically associated with substructure. We present strong direct evidence, based on both RR Lyrae stars and main sequence stars, that the halo stellar number density profile significantly steepens beyond a Galactocentric distance of ~30 kpc, and a larger fraction of the stars are associated with substructure. By using a novel method that simultaneously combines data for RR Lyrae and main sequence stars, and using photometric metallicity estimates for main sequence stars derived from deep co-added u-band data, we measure the metallicity of the Sagittarius dSph tidal stream (trailing arm) towards R.A.2h-3h and Dec~0 deg to be 0.3 dex higher ([Fe/H]=-1.2) than that of surrounding halo field stars. Together with a similar result for another major halo substructure, the Monoceros stream, these results support theoretical predictions that an early forming, smooth inner halo, is metal poor compared to high surface brightness material that have been accreted onto a later-forming outer halo. The mean metallicity of stars in the outer halo that are not associated with detectable clumps may still be more metal-poor than the bulk of inner-halo stars, as has been argued from other data sets.Comment: Submitted to ApJ, 68 pages, 26 figures, supplemental material (light curves, templates, animation) can be downloaded from http://www.astro.washington.edu/bsesar/S82_RRLyr.htm
    corecore